Particle/Gamma detectors in RIBF

Hideaki Otsu (RIKEN Nishina Center)

"Full deposition type calorimeter in particle and nuclear physics ~Practical utilization examples and applications~"

in ELPH, Tohoku University

2015/03/10
RIKEN Accelerator Research Facility
and RI Beam Factory Project

Fast RI beams

SHE (Z=110, 111, 112, 113)

~5 MeV/nucleon

RARF

pol. d beams

135 MeV/nucleon
for light nuclei

345 MeV/nucleon
up to U

1st beam in 2006

RI beams (<5 AMeV)

SRC+BigRIPS
High Intense primary beam to generate
high intense secondary beam
Nuclear Physics Frontier
+ High performance spectrometers
ZD/SHARAQ/SAMURAI

RIKEN Accelerator Research Facility
and RI Beam Factory Project
Challenges at the RIBF

Shell Evolution:
- magicity loss and new magicity

Dynamics of new “material”:
- Neutron-skin (halo)

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter
- SN explosion, neutron-star
Physics explored by SAMURAI spectrometer

- Particle/Gamma detectors in RIBF
- Separation energy
- Neutron star
- N \geq Z
- Stable
- Gas phase
- Giant resonance
- Cluster degree of freedom at neutron rich nuclei
- Excitation energy
- Cluster correlation
- Soft mode
- 2n correlation
- N > Z
- Unbound state
- Explosive hydrogen burning
- Halo
- Skin
- Egg
- p/n decoupling
- Neutron excess
- Heavy element synthesis
- Unbound state
- Heavy element synthesis
- p/n decoupling
- 2n correlation
- Low density weak (no) binding
- Disappearance/Appearance of magicity
- Neutron excess
- Neutron star
- Particle/Gamma detectors in RIBF
Spectroscopy for unstable nuclei

- gamma ray spectroscopy
 - for bound states
 - extremely small branch from unbound state

- invariant mass spectroscopy
 - for unbound states
 - gamma rays detection is also needed for residue

- missing mass spectroscopy
 - independent for bound and unbound states
Primary beam up to U 345 MeV/u 15 pnA (=1.2kW) 2014/10
Secondary beam production
Be/W target 1-30 mm²
Isotope separation by $Bp + \Delta E(\text{Wedge})$
Particle/Gamma detectors in RIBF

2nd beam Tagging
F3-F7 TOF
F5 Bp tagging

ZeroDegree
SAMURAI
SHARAQ
SHARAQ-SDQ
SHARAQ-D1
SHARAQ-Q3
Particle/Gamma detectors in RIBF

F7-F11 TOF (L~30m)
F9 Bp tagging
F11 TKE

Secondary Target
e.g. Liq. H, He, Pb/Au/C
Particle/Gamma detectors in RIBF

TOF Target-FP

(L~8m)

Bp @ FP TKE

Secondary Target
e.g. Liq. H, He, Pb/Au/C
Super conducting ring cyclotron (SRC)

K=2600 MeV / 8300 ton

Accelerate d to 238U up to 345 A MeV
First beam on 2006/12,
First 238U beam on 2007

238U \sim 10 pnA on 2013

BigRIPS

Large acceptance secondary beam separator
with 9 Tm bending power
w/ Super conducting Quadrupole magnets
Aperture of 60 mrad x 80 mrad on target
corresponds to 50 % of fission fragments

Generate 125,126Pd on 2007/05
and over 20 new isotopes on 2008/11
Detectors for γ spectroscopy in RIBF

1. DALI2
2. DALI2 + X
3. Catana (Togano-san)
 (4. Eurica)
• Nuclear excitation (C target)
 • \(E(2+, 4+\ldots)\) determination

• Coulomb excitation (Pb/Au target)
 • \(B(E2\uparrow)\) determination

``Inverse kinematics of the ("\(\gamma\", \(\gamma\)\)) reaction``
In beam γ spectroscopy with DALI

Data on 2008

32Ne 2^+ energy determination

Data on 2011

``Inverse kinematics of the ("γ, γ') reaction"

42Si $4^+ \rightarrow 2^+$ energy determination

Cumulative report are given in Pieter Doornenbal, Prog. Theor. Exp. Phys. (2012) 03C004
DALI2: A NaI(Tl) detector array for measurements of γ rays from fast nuclei

S. Takeuchi a,*, T. Motobayashi a, Y. Togano b, M. Matsushita c, N. Aoi d, K. Demichi e, H. Hasegawa e, H. Murakami a

a RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
b Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
c CNS, University of Tokyo, RIKEN campus, Wako, Saitama 351-0198, Japan
d RCNP, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
e Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan

ARTICLE INFO

Article history:
Received 26 February 2014
Received in revised form 13 June 2014
Accepted 30 June 2014
Available online 8 July 2014

Keywords:
Scintillation detector
In-beam γ-ray spectroscopy
Radioactive beam experiment

ABSTRACT

A NaI(Tl) detector array called DALI2 (Detector Array for Low Intensity radiation 2) has been constructed for in-beam γ-ray spectroscopy experiments with fast radioactive isotope (RI) beams. It consists typically of 186 NaI(Tl) scintillators covering polar angles from $\sim 15^\circ$ to $\sim 160^\circ$ with an average angular resolution of 6° in full width at half maximum. Its high granularity (good angular resolution) enables Doppler-shift corrections that result in, for example, 10% energy resolution and 20% full-energy photopeak efficiency for 1-MeV γ rays emitted from fast-moving nuclei (velocities of $v/c = 0.6$). DALI2 has been employed successfully in numerous experiments using fast RI beams with velocities of $v/c = 0.3$–0.6 provided by the RIKEN RI Beam Factory.

© 2014 Elsevier B.V. All rights reserved.
DALI2

立教大学、理化学研究所の共同研究開発

- 高速（$b=0.3-0.6$）で飛行する原子核から放出されるガンマ線を測定
- ドップラーシフトを補正

→ 高検出効率、高角度分解能
- NaI(Tl)検出器を160個使用
- 160個の検出器を効率よく配置

これまでに、RARF,RIBFの実験に使用

<table>
<thead>
<tr>
<th>$\beta = v/c$</th>
<th>DALI ($\beta = 0.0$)</th>
<th>DALI ($\beta = 0.3$)</th>
<th>DALI2 ($\beta = 0.0$)</th>
<th>DALI2 ($\beta = 0.3$)</th>
<th>DALI2 ($\beta = 0.6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of detectors</td>
<td>~60</td>
<td>160</td>
<td>186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of layers</td>
<td>6–8</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle coverage (degrees)</td>
<td>~50°–~150°</td>
<td>~15°–~160°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average $\Delta \theta$ (FWHM) (degrees)</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta E/E$ (FWHM) (%)</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>13</td>
<td>10</td>
<td>24</td>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>
これまでの実験

2002年から実験に使用

RARF, RIBFで30実験以上

投稿論文は39編ほど出版済み。これからも数本出ます

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Beam</th>
<th>Energy (MeV/μ)</th>
<th>Target</th>
<th>Thickness (mg/cm²)</th>
<th>Observables</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(³⁵⁺F, ²⁵⁺F)</td>
<td>²⁵⁺F</td>
<td>30.6</td>
<td>Liq.H₂</td>
<td>210</td>
<td>levels, σ</td>
<td>[29]</td>
</tr>
<tr>
<td>H(³³⁺B, ¹⁷⁺B)</td>
<td>¹⁷⁺B</td>
<td>43.0</td>
<td>Liq.H₂</td>
<td>180</td>
<td>levels, σ</td>
<td>[30]</td>
</tr>
<tr>
<td>H(²⁵⁺C, ²⁵⁺C)</td>
<td>²⁵⁺C</td>
<td>49.4</td>
<td>Liq.H₂</td>
<td>190</td>
<td>levels, σ, β⁺</td>
<td>[30]</td>
</tr>
<tr>
<td>H(³⁷⁺C, ²⁷⁺C)</td>
<td>²⁷⁺C</td>
<td>43.3</td>
<td>Liq.H₂</td>
<td>190</td>
<td>levels, σ, β⁺</td>
<td>[31]</td>
</tr>
<tr>
<td>H(³⁷⁺B, ²⁷⁺B)</td>
<td>²⁷⁺B</td>
<td>43.8</td>
<td>Liq.H₂</td>
<td>190</td>
<td>dσ/dΩ, δ</td>
<td>[32]</td>
</tr>
<tr>
<td>H(³⁷⁺C, ²⁷⁺C)</td>
<td>²⁷⁺C</td>
<td>33.0</td>
<td>Liq.H₂</td>
<td>225</td>
<td>dσ/dΩ, δ</td>
<td>[33]</td>
</tr>
<tr>
<td>H(²²⁺O, ²²⁺O)</td>
<td>²²⁺O</td>
<td>35.0</td>
<td>Liq.He</td>
<td>100</td>
<td>dσ/dΩ</td>
<td>[34]</td>
</tr>
<tr>
<td>H(²²⁺F, ²²⁺F)</td>
<td>²²⁺F</td>
<td>41.5</td>
<td>Liq.He</td>
<td>100</td>
<td>dσ/dΩ</td>
<td>[35]</td>
</tr>
<tr>
<td>H(²⁵⁺Ne, ²⁵⁺Ne)</td>
<td>²⁵⁺Ne</td>
<td>36.0</td>
<td>Liq.He</td>
<td>100</td>
<td>dσ/dΩ</td>
<td>[36]</td>
</tr>
</tbody>
</table>

CD₃(²²⁺O, ²²⁺O) | ²²⁺O | 34.0 | CD₃ | 30 | σ, β | [37] |

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Beam</th>
<th>Energy (MeV/μ)</th>
<th>Target</th>
<th>Thickness (mg/cm²)</th>
<th>Observables</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(⁶⁰⁺Na, ⁶⁰⁺Na)</td>
<td>⁶⁰⁺Na</td>
<td>50.0</td>
<td>Liq.H₂</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[38]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>30.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[39]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[40]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[41]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[42]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[43]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[44]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[45]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[46]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[47]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[48]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[49]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[50]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[51]</td>
</tr>
<tr>
<td>H(⁶⁰⁺Na, ³⁰⁺Na)</td>
<td>³⁰⁺Na</td>
<td>34.0</td>
<td>Na</td>
<td>210</td>
<td>levels, σ, β</td>
<td>[52]</td>
</tr>
</tbody>
</table>

論文出版時のリスト
Neutron number 34 makes exotic calcium–54 isotopes doubly magic

by S. Takeuchi
共同研究の枠組み

RIBFでDALI2などを使った実験を対象

17か国、110名

2015/2/23現在

http://www.nishina.riken.jp/collaboration/SUNFLOWER/index.html
DALI2

- DALI2 is "Calorimetric" device?

- Motobayashi (founder or originator of DALI/DALI2) answered "No", because of lack of efficiency

| Basic parameters of DALI and DALI2. The efficiencies and energy resolutions are for 1-MeV γ rays. |
| --- | --- | --- | --- | --- |
| $\beta = v/c$ | DALI | | DALI2 | | | |
| | 0.0 | 0.3 | 0.0 | 0.3 | 0.6 |
| Number of detectors | ~ 60 | | 160 | | 186 |
| Number of layers | 6–8 | | 16 | | |
| Angle coverage (degrees) | $\sim 50^\circ$–$\sim 150^\circ$ | | $\sim 15^\circ$–$\sim 160^\circ$ | | |
| Average $\Delta \theta$ (FWHM) (degrees) | 10 | | 7 | | |
| $\Delta E/E$ (FWHM) (%) | 10 | 12 | 7 | 8 | 10 |
| Efficiency (%) | 13 | 10 | 24 | 24 | 20 |
For E1 strength search on threshold region

- 8 x LaBr3 detectors were coupled with DALI (96 crystals) to cover high energy gamma up to 10 or 15 MeV.
- LaBr3(Ce) : 3.5''φ x 8'' (8.9cm φ x 20.3 cm depth)
- at θ = 30 degree(Lab)
Characterization of large volume 3.5” × 8” LaBr₃:Ce detectors

ᵃUniversità degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano, Italy
ᵇINFN Milano, Via Celoria 16, 20133 Milano, Italy
ᶜInstitute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), P.O. Box 51, H-4001 Debrecen, Hungary
ᵈSRE-Pa, ESA/ESTEC, Keplerlaan 1, 2200AG Noordwijk, The Netherlands

ARTICLE INFO

Article history:
Received 26 March 2013
Received in revised form 24 July 2013
Accepted 28 July 2013
Available online 3 August 2013

Keywords:
LaBr₃:Ce
Large volume scintillator detectors
Gamma rays
Energy resolution
Time resolution

ABSTRACT

The properties of large volume cylindrical 3.5” × 8” (89 mm × 203 mm) LaBr₃:Ce detectors were characterized using the Hamamatsu R10233-100ESL photo-multiplicator tube coupled to the Hamamatsu R10233-100ESL photo-multiplicator tube. The detectors were used in a 30 cm × 30 cm × 30 cm NaI detector, and the energy resolution and response linearity of the LaBr₃:Ce detectors were measured. The results were compared with those obtained using the same NaI detector. The LaBr₃:Ce detectors showed a higher energy resolution and a broader energy distribution than the NaI detector. The detectors also showed a higher energy resolution and a broader energy distribution than the NaI detector. The LaBr₃:Ce detectors showed a higher energy resolution and a broader energy distribution than the NaI detector. The detectors also showed a higher energy resolution and a broader energy distribution than the NaI detector.

Fig. 15. Top panel: the energy spectrum measured with the S/N M0249CS_B LaBr₃:Ce detector, the “LABRVD” active voltage divider, free running ADCs and digital processing, using the Am-Be-Ni source (see Section 4.1). Bottom panel: as a reference, the same energy spectrum measured using a HPGe detector.
LaBe3(Ce) properties

• Time response: very good:
• Linearity: very high
 → favorable for multi step energy deposition in material \(\gamma \) rays

<table>
<thead>
<tr>
<th>comparison to common scintillators:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI(Tl)</td>
</tr>
<tr>
<td>Light Output (1/keV)</td>
</tr>
<tr>
<td>Decay Time (ns)</td>
</tr>
<tr>
<td>(Z)</td>
</tr>
<tr>
<td>Density (g/cm(^3))</td>
</tr>
<tr>
<td>Temp. Coef. (%/K)</td>
</tr>
<tr>
<td>Max. Sc. Wavel. (nm)</td>
</tr>
<tr>
<td>Energy Res. (%)</td>
</tr>
<tr>
<td>Time Res. (ns)</td>
</tr>
<tr>
<td>Linearity</td>
</tr>
<tr>
<td>Hygroscopic</td>
</tr>
</tbody>
</table>

• for same detector volume

Heiko Scheit, RIBF ULIC Detector workshop

\[\varepsilon_{FE} \propto \rho^{1.5} \times Z^{3.5} \]
132Sn, 70Ni, 24O with Au (Coulomb ex.) or Liq. He (Isoscalar Dipole) performed on Oct/Nov, 2014.

Dynamic range: \(E_g < 40 \text{ MeV} \rightarrow E_g(\text{CM}) < 26 \text{ MeV} \)

Time response of LaBr3(Ce): \(\sigma t < 0.3 \text{ ns for } E_g > 1 \text{ MeV} \) which enable us to separate \(\gamma \) from particles like p or n
DALI+LaBr3
LaBr3 efficiency estimation

CM 0.5 MeV
eff = 4.9%

CM 1 MeV
eff = 4.0%

CM 5 MeV
eff = 5.8%
(photo peak + single+double escape)

CM 10 MeV
eff = 5.8%
(photo peak + single+double escape)
DALI+LaBr3

- DALI+LaBr3 is "Calorimetric" device?
- for the moment: No, while the effort would continue to future project:

- SHOGUN1000

<table>
<thead>
<tr>
<th>fast beam setup ($v = 0.6c$)</th>
<th>$\frac{\Delta E}{E}$ (%)</th>
<th>ϵ_{γ} (%)</th>
<th>$\epsilon_{\gamma\gamma}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI(Tl) DALI2</td>
<td>10.0</td>
<td>23.5</td>
<td>5.5</td>
</tr>
<tr>
<td>RISING</td>
<td>1.9</td>
<td>2.8</td>
<td>0.08</td>
</tr>
<tr>
<td>SHOGUN 1000</td>
<td>3.2</td>
<td>35.0</td>
<td>12.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>slow/stopped beam setup</th>
<th>$\frac{\Delta E}{E}$ (%)</th>
<th>ϵ_{γ} (%)</th>
<th>$\epsilon_{\gamma\gamma}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISING</td>
<td>0.2</td>
<td>15.0</td>
<td>2.25</td>
</tr>
<tr>
<td>SHOGUN 1000</td>
<td>2.4</td>
<td>56.0</td>
<td>31.3</td>
</tr>
</tbody>
</table>
Total energy detector for particles in RIBF

(0. Why TKE detector is needed)
1. SAMURAI TKE
2. LaBr3 at ZD
Total Energy Detector (TED) for RI-beam experiments
Invariant mass spectroscopy: one example of RI beam experiment

RI beam
\(~\text{few 100 MeV/A}\)

excited nucleus

decay fragments

\((\Delta E, Bp, \text{TOF}) \rightarrow (A, Z, p_1)\)

- Excitation energy \(E_X\) or relative energy \(E_{rel}\)
 \(E_X = \sqrt{(E_f + E_N)^2 - (\vec{p}_f + \vec{p}_N)^2} - (M_f + M_N) + S_N\)

- Required resolution
 - Invariant mass: \(\sigma(E_{rel}) \sim 0.2\sqrt{E_{rel}}\) [MeV]
 - PID of heavy fragment: \(\sigma_{A/A} \sim 0.2/100\)

 rigidity(f)
 \(\sigma_R \sim \frac{1}{200}\)
 \(R \sim \frac{1}{200}\)
 \(\sigma_R \sim \frac{1}{700}\)
 \(R \sim \frac{1}{700}\)
 \(\sigma_R \sim \frac{1}{700}\)
 \(R \sim \frac{1}{1600}\)

 velocity(N)
 \(\sigma_\beta \sim \frac{5}{1000}\)
 \(\beta \sim \frac{5}{1000}\)
 \(\sigma_\beta \sim \frac{1}{1100}\)
 \(\beta \sim \frac{1}{1100}\)
 \(\sigma_\beta \sim \frac{1}{1100}\)
 \(\beta \sim \frac{1}{1100}\)

 angle(N)
 \(\sigma_\theta \sim \frac{1}{200}\)
 \(\theta \sim \frac{1}{200}\)
 \(\sigma_\theta \sim \frac{1}{200}\)

- TOF resolution
 \(\sigma_{\text{TOF}} \sim 0.3\text{nsec} \at L=10\text{m}\)
 \(\sigma_{\text{TOF}} \sim 50\text{psec} \at L=10\text{m}\)

- Excitation energy resolution
 \(E_X \sim 5\text{cm} \at L=10\text{m}\)

- Total energy resolution
 \(\sigma_T \sim \frac{1}{1000}\)
 \(T \sim \frac{1}{1000}\)
 \(T \sim \frac{1}{1000}\)

- Velocity resolution
 \(\sigma_\beta \sim \frac{0.6}{1000}\)
 \(\beta \sim \frac{0.6}{1000}\)
 \(\sigma_\beta \sim \frac{0.6}{1000}\)
 \(\beta \sim \frac{0.6}{1000}\)

- Possible realizations
 \(\sigma_{\text{TOF}} \sim 50\text{psec} \at L=10\text{m}\)
 \(\sigma_{\text{TOF}} \sim 50\text{psec} \at L=10\text{m}\)
 \(\sigma_{\text{TOF}} \sim 50\text{psec} \at L=10\text{m}\)
Total energy detector (TED) : type of scintillator

• Goal / Purpose
 • $\sigma_A/A \sim 0.2/100$ for PID $\leftrightarrow \sigma_T/T - 0.1 \sim 0.2\% @ T=20\sim30\text{GeV}$

• Scintillators tested
 • **NaI(Tl)** : 3" cube + 3"φPMT
 • $\sigma_T/T \sim 0.15\% @ 23\text{GeV} \ (290 \text{MeV/A}^{78}\text{Ge})$ OK
 • rate?($\tau \sim 200\text{nsec}$), non-uniformity?, PMT at low HV?, hydroscopic: casing(MgO+Al), radiation damage?
 • **CsI(Tl)** : 5cm-cube + PD + charge-sensitive PA
 • PD : 1x1, 1.8x1.8, 2.8x2.8 cm2
 • C_f of hybrid PA $\sim 100\text{pF}$ (low gain), oscillation
 • $\sigma_T/T \sim 0.4\%$ for $T = 7 \sim 20 \text{GeV} \ (\@ 250\text{MeV/A})$ X
 • rate?($\tau \sim 1\text{usec}$), worse resolution, PD for larger crystals?
 • **HP Ge** : 60mmφx35mm (semi planar)
 • PreAmp ($C_f=200\sim500\text{pF}$), self made, oscillation
 • HV bias : large leak
 • $\sigma_T/T \sim 0.35\% @ 3\text{GeV}$ X
CsI(pure) ?

- **CsI(pure) + PMT ?**
 - less light, fast decay time
 - small radiation damage
 - UV light
 - large temperature dependence: \sim% / deg
- Beam test using CsI(pure) 100x100x50mm3 + 3"φ-PMT (HPK-R6233)
 - large saturation effect observed
 - pulse shape of heavy ion is different from γ, e, & proton
 - UV / non-UV window tested: no difference in resolution \rightarrow PMT w non-UV window
 - PMT breeder: taper-type w high breeder current
 - $\sigma T/T=0.1\sim0.2\%$ was not achieved. THEN...
- enlarge total-energy difference using energy-loss for fragment with the same rigidity

\[Ap_1(A) \sim (A+1)p_1(A+1) \]

\[69^{\pm1}\text{Cu (Z=29)} \]
\[294 \text{ MeV/A} \]

\[\Delta T \]
\[T_{A+1} \quad T_A \quad T_{A-1} \]

\[AT(A) \sim (A+1)T(A+1) \]
prototype test @HIMAC

CsI(pure, 100x100x50 mm2) + 3"ϕ PMT

270 MeV/A ($\Delta p/p \sim 0.1\%$) with Al absorber

TED pulse height

^{73}As $\Delta x / \sigma \sim 6.5$

^{72}As
Total Energy Detector (TED)

* Purpose: $\sigma_A \sim 0.2$ @ $A \sim 100$, $E_{tot} = 25 \sim 30 GeV$

* Configuration

 CsI(pure): 100x100x50mm3 x 32
 effective area: 800mm(H) x 400mm(V)
 PMT: R6233HA (3”φ, non-UV) in light / magnetic shield box
Calibration using secondary beam

- Setup @HIMAC SB2

- Pulse height + position dependence for all 32 crystals
- RI beam: ~290 MeV/A, A~70
Pulse height : degrader thickness dependence @crystal center

- $^{69}\text{Cu}(z=29)$ 294 MeV/A, Al thickness = 0~17mm

![Graphs showing pulse height ratio and yield (reaction loss)](image)

- Pulse height ratio [%]
- RMS resolution [%]
- Yield (reaction loss) [%]

<table>
<thead>
<tr>
<th>Al thickness [mm]</th>
<th>0 mm</th>
<th>5 mm</th>
<th>10 mm</th>
<th>12 mm</th>
<th>13 mm</th>
<th>15 mm</th>
<th>16 mm</th>
<th>17 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(pulse height fraction)</td>
<td>(0.36%)</td>
<td>(0.42%)</td>
<td>(0.58%)</td>
<td>(0.69%)</td>
<td>(0.77%)</td>
<td>(1.12%)</td>
<td>(1.65%)</td>
<td>(3.19%)</td>
</tr>
</tbody>
</table>
Mass separation: degrader-thickness dependence @ crystal center

- \(^{68,69,70}\text{Cu}(z=29) \) 294 MeV/A, Al = 0~17mm

- mass separation \(\sim 7\sigma \)
- but with low-energy tail
- adjustable by changing absorber thickness
- with energy resolution of \(\sigma_T/T \sim 1\% \)
Calibration: position dependence

- position dependence by extrapolating drift chamber track

- strange position dependence
 - data taken for all crystals
 - calibration procedure?

![Graphs showing pulse height vs. vertical position](image-url)
TED @SAMURAI17 exp.

• $p^{(^{132}\text{Sn},n)}$ exp. April-2014
Particle/Gamma detectors in RIBF

SAMURAI17
particle ID @ SAMURAI FP

- TKE detector response for distinguish charge states.
- In near future.

\[Z \]

\[\text{Counts} \]

\(\sigma_Z = 0.22 \)

\[\text{Counts} \]

\(\sigma_{A/Q} = 0.14\% \)

\(132\text{Sb}^{50+} \)

ROI

Plastic w/ position dependence correction

Particle/Gamma detectors in RIBF

\(132\text{Sn}^{50+} \)

\(50+ \)

\(49+ \)

\(49.5 < Z < 50.5 \)

\(49 \)
Experiment for transmutation process setup

Beam Production

BigRIPS

Tagging

Secondary target CD$_2$, CH$_2$, C

LaBr$_3$(Ce)

Products PID

ZeroDegree
Particle Identification for 137Cs

BigRIPS PID

- Atomic number Z
- Mass-to-charge ratio A/Q
- A/Q resolution 0.146×10^{-2} (rms)
- Z resolution 0.25

ZeroDegree PID

- Atomic number Z
- Mass-to-charge ratio A/Q
- A/Q resolution 0.201×10^{-2} (rms)
- Z resolution 0.25
Charge states Identification by:

\[{^{137}}\text{Cs} \rightarrow {^{137}}\text{XCs} \]

ZeroDegree PID

TKE detector @ F11
LaBr3(Ce) 76 φ x 76 [mm³]
Photo Dyode readout

Residue:

\[{^{136,\ldots}}\text{Cs}, 160 \text{ MeV/u} @ \text{F11} \]
\[E_{\text{total}} = 160 \times 136 \text{ MeV} \]
\[\sim 22 \text{ GeV} \]
Charge states Identification by TKE response

Charge states ID by TKE

$Q=Z \quad 78\%$
$Q=Z-1 \quad 21\%$
$Q=Z-2 \quad 1\%$

$\sigma(E_t) \sim 100 \text{ MeV on } 20 \text{ GeV}
A \text{ resolution } 0.78 \text{ (RMS)}$

Enough for separate:
$\Delta A = 2$;
$^{133}\text{Cs}^{55+} \text{ from } ^{131}\text{Cs}^{54+}$

What makes the resolution:
#of photon $\rightarrow x$
*) rate dependence
Summary

- Gamma ray detectors, Particle total energy detectors in RIBF:
 - "Calorimetric" detector → Solid detector

- Gamma ray detector:
 - DALI → DALI + LaBr3
 - Still 10~20% coverage on efficiency
 - LaBr3 detector is promising for future device
 - Internal Background source
 - Patent ...

- Particle total energy detector:
 - CsI(pure) array on SAMURAI focal plane (Dispersive)
 - $\sigma(L)/L \sim 0.4\%$
 - with energy absorber $\sigma(A)\sim1/7$ @ $A\sim70$
 - LaBr3 on ZD focal plane (Achromatic)
 - Dynamic range : ~ 250 MeV/u x A (25 GeV @ A=100)
 - Rate latency problem
 - 1k cps : OK
 - 10k cps : get worse

CeBr3 (yesterday talk)
Summary (cont.)

• Calorimetric devices in RIBF which are not mentioned today:
 • neutron detectors for SAMURAI
 • NEBULA + neuLAND
 • ε_{1n}: 60% or more

• Possibility of TKE detector by Gas for HI in RIBF energies:
 • 200 MeV/u Z=55 particle: Range ~ 1.6 g/cm2
 • Xe 1atm 2.7m : 1.6 g
 • Rn 1atm 1.6m
 • Multi sampling: Energy absorber
 • Quenching property is much different from that of solid material
Acknowledgement

• SAMURAI
 • T. Kobayashi (Tohoku U.), J. Yasuda (Kyushu U.)
 and SAMURAI collaboration

• In-Beam
 • S. Takeuchi (RNC), H. Baba (RNC), N. Nakatsuka (Kyoto/RNC)
 and SUNFLOWER collaboration

• ImPACT
 • H. Wang (RNC)
 and collaborators for TransMutation Project experiments